Nontradable Goods

Applied International Economics.

Gabriel Marin Anahuac University, Spring 2024.

 The Nontradable Goods Model Budget constraints Households Equilibrium conditions Examples

The Nontradable Goods Model

Objectives

• Given two goods in our basic model of Lecture 1, the relative price adjusts in response to various shocks

Assumptions

- Two goods, tradable (foreign) and nontradable (home)
- Supply of tradable goods is infinitely elastic
- Supply of nontradable goods is inelastic

For the two periods we have

$$b_1 = y_1^T + p_1 y_1^N - c_1^T - p_1 c_1^N,$$
(1)

$$0 = (1+r)b_1 + y_2^T + p_2 y_2^N - c_2^T - p_2 c_2^N,$$
(2)

where c_t^T and c_t^N represent the consumption of tradable and nontradables at time *t*, respectively; y_t^T and y_t^N are the endowments of tradable and nontradable goods, respectively. *p* represents the relative price of nontradable goods in terms of tradable goods.

Combining the budget constraints yields the intertemporal budget constraint (IBC)

$$y_1^{\mathsf{T}} + p_1 y_1^{\mathsf{N}} + \frac{y_2^{\mathsf{T}} + p_2 y_2^{\mathsf{N}}}{1 + r} = c_1^{\mathsf{T}} + p_1 c_1^{\mathsf{N}} + \frac{c_2^{\mathsf{T}} + p_2 c_2^{\mathsf{N}}}{1 + r}$$
(3)

Households

The households' utility function has the following form:

$$W = \gamma \log(c_1^{\mathsf{T}}) + (1 - \gamma)\log(c_1^{\mathsf{N}}) + \beta[\gamma \log(c_2^{\mathsf{T}}) + (1 - \gamma)\log(c_2^{\mathsf{N}})],$$
(4)

where γ represents the preference parameter that will allow us to examine shocks in the demand of tradables relative to nontradables.

Households choose c_1^T , c_1^N , c_2^T , and c_2^N to maximize Equation (4) subject to Equation (3). The first-order conditions are (assuming $\beta(1 + r) = 1$):

$$\frac{\gamma}{c_1^T} = \lambda,\tag{5}$$

$$\frac{1-\gamma}{c_*^N} = \lambda p_1,\tag{6}$$

$$\frac{\gamma}{c_2^T} = \lambda,\tag{7}$$

$$\frac{1-\gamma}{c_2^N} = \lambda p_2,\tag{8}$$

Households (continued)

If we combine Equations (5) and (7) we obtain that:

$$c_1^{\mathsf{T}} = c_2^{\mathsf{T}} = \bar{c}^{\mathsf{T}}.\tag{9}$$

Due to separability in preferences, consumption of tradable goods is *smoothed* over time. Conversely, from Equations (6) and (8):

$$\frac{c_1^N}{c_2^N} = \frac{p_2}{p_1}$$
(10)

If the relative prices were the same across periods ($p_1 = p_2$), then consumption of nontradables would also be smoothed over time.

Now, the *static* equilibrium is as follows (combining Equations (5) and (6) and (7) and (8)):

$$\frac{e^{N}}{t}_{t} = \left(\frac{1-\gamma}{\gamma}\right) \frac{1}{p_{t}}, \quad t = 1, 2.$$
(11)

This condition can be interpreted as a demand function for nontradable goods relative to tradable goods.

The consumption of nontradable goods must equal their fixed supply:

$$c_t^N = y_t^N$$
, for $t = 1, 2.$ (12)

Imposing the equilibrium in the nontradable goods market, we have that

$$b_1 = y_1^T - c_1^T, (13)$$

$$-b_1 = rb_1 y_2^T - c_2^T, (14)$$

which are the current account balances. Combining the two equations above, we obtain the economy's resource constraint:

$$y_1^T + \frac{y_2^T}{1+r} = c_1^T + \frac{c_2^T}{1+r}$$
 (15)

Assuming endowments over time (i.e., $y_1^T = y_2^T$, $y_1^N = y_2^N$), we know from Equations (9) and (15) that:

$$\bar{c^{\intercal}} = \bar{y^{\intercal}}.$$
(16)

As the endowment of nontradables is also constant over time, Equation (12) implies:

$$\bar{c^N} = \bar{y^N}.$$
 (17)

Furthermore, from Equation (11) we have that:

$$\bar{p} = \left(\frac{1-\gamma}{\gamma}\right) \frac{\bar{y}^{\bar{1}}}{\bar{y}^{\bar{N}}}.$$
(18)

In order to determine *p*, we need to understand supply and demand dynamics. Recall the demand function (Equation (11)):

$$D(\bar{p}) = \left(\frac{1-\gamma}{\gamma}\right) \frac{1}{\bar{p}}.$$
(19)

Since there is no production in this economy, the supply line is vertical:

$$S(\bar{p}) = \frac{\bar{y^N}}{\bar{y^T}}$$
(20)

As usual, the intersection of these curves will yield the equilibrium price.

Determination of *p* (continued)

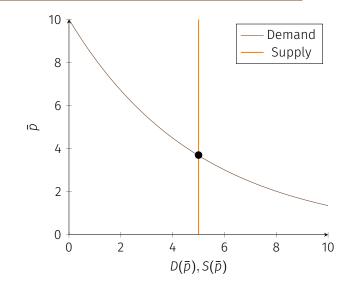


Figure 1: Determination of relative price of non-tradable goods

Comparative statics in the stationary equilibrium

Let us consider several scenarios:

- + An increase in $\bar{y^{T}}$
- + An increase in $y^{\overline{N}}$
- + An increase in the demand of tradable goods γ

Let us illustrate the association between trade imbalances and the real exchange rate. Suppose both y^{T} and y^{N} are low relative to period 2. However, the ratio y^{T}/y^{N} remains the same in both periods.

- Nontradable goods introduce a key relative price in the economy.
- The supply of nontradable goods is not infinitely elastic (as that of tradable goods) and hence the relative price of nontradables will need to adjust in response to shocks.
- We expect trade deficits to be accompanied by a high relative price of non-tradables reflecting excess demand for both tradables and nontradables. Conversely, trade surpluses will be accompanied by a low relative price of nontradables.